Sunday 19 February 2017

Moving Average Alpha

Ich habe einen kontinuierlichen Wert für die Id wie zu berechnen einen exponentiellen gleitenden Durchschnitt. Normalerweise verwendet man nur die Standardformel dafür: wobei S n der neue Durchschnitt ist, Alpha das Alpha ist, Y die Stichprobe ist und S n-1 der vorherige Durchschnitt ist. Leider, aufgrund verschiedener Fragen habe ich nicht eine konsistente Probe Zeit. Ich kann wissen, dass ich höchstens sagen kann, einmal pro Millisekunde, aber aufgrund von Faktoren aus meiner Kontrolle, kann ich nicht in der Lage, eine Probe für mehrere Millisekunden zu einer Zeit zu nehmen. Eine wahrscheinlich häufiger Fall ist jedoch, dass ich einfache Probe ein wenig früh oder spät: anstelle der Probenahme bei 0, 1 und 2 ms. I-Probe bei 0, 0,9 und 2,1 ms. Ich erwarte, dass, ungeachtet der Verzögerungen, meine Abtastfrequenz weit, weit über der Nyquist-Grenze liegen wird, und daher brauche ich mir keine Sorgen um Aliasing. Ich vermute, dass ich dies in einer mehr oder weniger vernünftigen Weise durch die Änderung der alpha passend, basierend auf der Länge der Zeit seit der letzten Probe. Ein Teil meiner Überlegung, dass dies funktionieren wird, ist, dass die EMA linear zwischen dem vorherigen Datenpunkt und dem aktuellen interpoliert. Wenn wir die Berechnung einer EMA der folgenden Liste von Proben in Intervallen t: 0,1,2,3,4 betrachten. Wir sollten das gleiche Ergebnis erhalten, wenn wir das Intervall 2t verwenden, bei dem die Eingänge 0,2,4 werden. Wenn die EMA davon ausgegangen ist, dass bei t 2 der Wert 2 seit t 0 war. Das wäre das gleiche wie das Intervall t Berechnung Berechnung auf 0,2,2,4,4, die ihr nicht tun. Oder macht das überhaupt Sinn Kann mir jemand sagen, wie man das Alpha passend ändert Bitte zeigen Sie Ihre Arbeit. D. h. Zeigen Sie mir die Mathematik, die beweist, dass Ihre Methode wirklich das Richtige tut. Sie sollten nicht erhalten die gleiche EMA für verschiedene Eingabe. Denken Sie an EMA als Filter, ist die Abtastung bei 2t äquivalent zu Down-Sampling, und der Filter wird einen anderen Ausgang zu geben. Dies ist mir klar, da 0,2,4 höherfrequente Komponenten als 0,1,2,3,4 enthält. Sofern die Frage ist, wie kann ich ändern Sie den Filter on the fly, damit es die gleiche Ausgabe. Vielleicht fehle ich etwas ndash freespace Aber der Eingang ist nicht anders, it39s nur selten abgetastet. 0,2,4 in Intervallen 2t ist wie 0,, 2,, 4 in Intervallen t, wobei die zeigt, dass die Probe ignoriert wird ndash Curt Sampson Jun 21 09 um 23:45 Diese Antwort auf meinem guten Verständnis von Tiefpass Filter (exponentiellen gleitenden Durchschnitt ist wirklich nur ein einpoliges Tiefpassfilter), aber mein dunstiges Verständnis dessen, was Sie suchen. Ich denke, das folgende ist, was Sie wollen: Erstens können Sie Ihre Gleichung ein wenig zu vereinfachen (sieht komplizierter, aber es ist einfacher in Code). Im gehend, Y für Ausgang und X für Eingang zu verwenden (anstelle von S für Ausgang und Y für Eingang, wie Sie getan haben). Zweitens ist der Wert von alpha hier gleich 1-e - Deltattau, wobei Deltat die Zeit zwischen den Abtastwerten ist und tau die Zeitkonstante des Tiefpaßfilters ist. Ich sage gleich in Anführungszeichen, weil dies gut funktioniert, wenn Deltattau ist klein im Vergleich zu 1, und alpha 1-e - Deltattau asymp Deltattau. (Aber nicht zu klein: youll laufen in Quantisierungsprobleme, und wenn Sie nicht auf einige exotische Techniken zurückgreifen, benötigen Sie normalerweise eine zusätzliche N Bits Auflösung in Ihrer Zustandsvariable S, wo N-Log 2 (alpha).) Für größere Werte von Deltattau Beginnt der Filtereffekt zu verschwinden, bis Sie zu dem Punkt kommen, an dem Alpha in der Nähe von 1 liegt, und Sie haben grundsätzlich nur den Eingang der Ausgabe zugewiesen. Dies sollte ordnungsgemäß mit unterschiedlichen Werten von Deltat funktionieren (die Variation von Deltat ist nicht sehr wichtig, solange alpha klein ist, sonst laufen Sie in einige ziemlich seltsame Nyquist Fragen Aliasing etc.), und wenn Sie arbeiten an einem Prozessor, wo Multiplikation Ist billiger als Division, oder Festkomma-Probleme sind wichtig, vorberechnen Omega-1tau, und erwägen zu versuchen, die Formel für Alpha zu approximieren. Wenn Sie wirklich wissen wollen, wie Sie die Formel alpha 1-e - Deltattau herleiten, dann betrachten wir ihre Differentialgleichungsquelle: die, wenn X eine Einheitsschrittfunktion ist, die Lösung Y 1 - e - ttau hat. Für kleine Werte von Deltat kann das Derivat durch DeltaYDeltat angenähert werden, was Ytau DeltaYDeltat X DeltaY (XY) (Deltattau) alpha (XY) ergibt und die Extrapolation von alpha 1-e - Deltattau kommt von dem Versuch, Einheit Schritt Funktion Fall. Würden Sie bitte erläutern, auf die Quottrying, um das Verhaltenquot Teil Match Ich verstehe Ihre kontinuierliche Zeit-Lösung Y 1 - exp (-t47) und seine Verallgemeinerung auf eine skalierte Schrittfunktion mit der Größe x und Anfangszustand y (0). Aber I39m nicht sehen, wie diese Ideen zusammen, um Ihr Ergebnis zu erzielen. Ndash Rhys Ulerich May 4 13 at 22:34 Dies ist keine vollständige Antwort, aber kann der Anfang von einem sein. Seine so weit wie ich mit diesem in einer Stunde oder so zu spielen Im Posting es als ein Beispiel für das, was Im Suchen, und vielleicht eine Inspiration für andere, die an dem Problem. Ich beginne mit S 0. Was der Mittelwert ist, der sich aus dem vorherigen Mittelwert S -1 und dem Abtastwert Y 0 bei t 0 ergibt. (T & sub1; - t & sub0;) ist mein Abtastintervall und & alpha; ist auf das eingestellt, was für dieses Abtastintervall und den Zeitraum, über den ich den Durchschnitt wünsche, geeignet ist. Ich überlegte, was passiert, wenn ich die Probe bei t 1 vermisse und stattdessen mit der mit t 2 getroffenen Probe Y 2 zu tun habe. Nun können wir mit der Erweiterung der Gleichung beginnen, um zu sehen, was passiert wäre, wenn wir gehabt hätten. Y 1: Ich bemerke, dass die Reihe unendlich auf diese Weise zu erweitern scheint, weil wir die S n auf der rechten Seite unendlich ersetzen können: Ok , Also sein nicht wirklich ein Polynom (albernes me), aber, wenn wir den Anfangsbegriff durch eins multiplizieren, sehen wir dann ein Muster: Hm: es ist eine exponentielle Reihe. Quelle Überraschung Stellen Sie sich vor, dass kommen aus der Gleichung für einen exponentiellen gleitenden Durchschnitt Also irgendwie, habe ich diese x 0 x 1 x 2 x 3. Ding gehen, und Im sicher Im riechen e oder einen natürlichen Logarithmus treten hier herum, aber ich kann mich nicht erinnern, wo ich als nächstes ging, bevor ich aus der Zeit lief. Jede Antwort auf diese Frage oder ein Korrektheitsnachweis einer solchen Antwort hängt stark von den Daten ab, die Sie messen. Wenn Ihre Proben bei t 0 0ms genommen wurden. T 1 0,9 ms und t 2 2,1 ms. Aber Ihre Alpha-Auswahl basiert auf 1-ms-Intervallen, weshalb Sie ein lokal angepasstes Alpha n wünschen. Der Beweis der Korrektheit der Wahl würde bedeuten, die Probenwerte bei t1ms und t2ms zu kennen. Dies führt zu der Frage: Können Sie Ihre Daten resonable interpolieren, um vernünftige Vermutungen, was in-between Werte haben könnte Oder können Sie sogar den Durchschnitt selbst interpolieren Wenn keiner von diesen möglich ist, dann soweit ich es sehe, die logische Die Wahl eines Zwischenwerts Y (t) ist der zuletzt berechnete Durchschnitt. D. h. Y (t) Asymp S n, wobei n maxmial ist, so dass t n ltt. Diese Wahl hat eine einfache Konsequenz: Lassen Sie alpha allein, egal was der Zeitunterschied war. Wenn auf der anderen Seite ist es möglich, Ihre Werte zu interpolieren, dann geben Sie Ihnen averagable Konstanten-Intervall-Samples. Schließlich, wenn sein sogar möglich ist, den Durchschnitt selbst zu interpolieren, würde das die Frage bedeutungslos machen. Ich glaube, ich kann meine Daten zu interpolieren: angesichts der Tatsache, dass I39m es in diskreten Intervallen, I39m, die dies bereits mit einem Standard-EMA Anytime tun, davon ausgehen, dass ich brauche Dass es funktioniert sowie eine Standard-EMA, die auch hat ein falsches Ergebnis zu produzieren, wenn die Werte nicht ändern, ziemlich gleichmäßig zwischen Sample-Perioden. Ndash Curt Sampson Aber das ist, was ich sagen: Wenn Sie die EMA eine Interpolation Ihrer Werte, you39re getan, wenn Sie verlassen Alpha, wie es ist (weil das Einfügen der jüngsten Durchschnitt, wie Y doesn39t ändern den Durchschnitt) . Wenn Sie sagen, dass Sie etwas brauchen, dass Zehnarbeit sowie ein Standard-EMAquot - was ist falsch mit dem Original Wenn Sie nicht mehr Informationen über die Daten, die Sie gemessen haben, werden alle lokalen Anpassungen an Alpha am besten willkürlich sein. Ndash balpha 9830 Jun 21 09 at 15:31 Ich würde den Alpha-Wert allein zu verlassen, und füllen Sie die fehlenden Daten. Da Sie nicht wissen, was während der Zeit geschieht, wenn Sie Probe nicht können, können Sie diese Proben mit 0s füllen, oder halten Sie den vorherigen Wert stabil und verwenden Sie diese Werte für die EMA. Oder eine Rückwärtsinterpolation, sobald Sie ein neues Sample haben, die fehlenden Werte ausfüllen und die EMA neu berechnen. Was ich versuche zu bekommen ist, haben Sie eine Eingabe xn, die Löcher hat. Es gibt keine Möglichkeit, um die Tatsache, dass Sie Daten fehlen. Sie können also einen Halten nullter Ordnung verwenden oder auf null setzen oder eine Art von Interpolation zwischen xn und xnM. Wobei M die Anzahl der fehlenden Proben und n der Beginn der Lücke ist. Eventuell sogar mit Werten vor n. Ich denke, dass nur Variieren der Alpha tatsächlich geben mir die richtige Interpolation zwischen den beiden Punkten, die Sie sprechen, aber in einer Viel einfacher Weg. Darüber hinaus denke ich, dass die Veränderung der Alpha wird auch ordnungsgemäß befassen sich mit Proben, die zwischen den Standard-Probenahme Intervalle. Mit anderen Worten, I39m auf der Suche nach dem, was Sie beschrieben, aber versuchen, Mathematik, um herauszufinden, die einfache Möglichkeit, es zu tun. Ndash Curt Sampson Ich glaube nicht, es gibt so ein Biest wie quotproper Interpolationquot. Sie wissen einfach nicht, was in der Zeit passiert ist, die Sie nicht probieren. Gute und schlechte Interpolation impliziert etwas Wissen, was Sie verpasst haben, da Sie messen müssen, um zu beurteilen, ob eine Interpolation gut oder schlecht ist. Obwohl dies gesagt, können Sie Begrenzungen, dh mit maximaler Beschleunigung, Geschwindigkeit, etc. zu setzen. Ich denke, wenn Sie wissen, wie die fehlenden Daten Modell, dann würden Sie nur Modell die fehlenden Daten, dann wenden Sie den EMA-Algorithmus ohne Veränderung eher Als das Ändern von alpha. Just my 2c :) ndash freespace Das ist genau das, was ich in meinem Bearbeiten auf die Frage vor 15 Minuten: quotYou einfach don39t wissen, was passiert in der Zeit, die Sie nicht Stichproben, aber that39s true Auch wenn Sie in jedem bestimmten Intervall Probe. So meine Nyquist-Kontemplation: Solange Sie wissen, die Wellenform doesn39t Richtungen ändern mehr als jedes Paar von Proben, die tatsächliche Probe-Intervall shouldn39t Angelegenheit, und sollte in der Lage sein zu variieren. Die EMA-Gleichung scheint mir genau so zu berechnen, als ob sich die Wellenform linear vom letzten Abtastwert zum aktuellen verändert hätte. Ndash Curt Sampson Ich glaube nicht, dass das stimmt. Das Nyquist39s-Theorem erfordert mindestens 2 Abtastungen pro Periode, um das Signal eindeutig identifizieren zu können. Wenn Sie das nicht tun, erhalten Sie Aliasing. Es wäre das gleiche wie das Sampling als fs1 für eine Zeit, dann fs2, dann zurück zu fs1, und Sie erhalten Aliasing in die Daten, wenn Sie mit fs2 Probe, wenn fs2 ist unter dem Nyquist-Limit. Ich muss auch gestehen, ich verstehe nicht, was du meinst, durch Quotwellenformänderungen linear vom letzten Sample zum aktuellen onequot. Könnten Sie bitte erklären, Cheers, Steve. Ndash freespace Dies ist ähnlich wie ein offenes Problem auf meiner Todo-Liste. Ich habe ein Schema ausgearbeitet, zu einem gewissen Grad, aber haben keine mathematische Arbeit, um diese Anregung noch zu unterstützen. Update amp summary: Möchte den Glättungsfaktor (alpha) unabhängig vom Kompensationsfaktor behalten (was ich hier als beta beziehe). Jasons ausgezeichnete Antwort bereits akzeptiert hier funktioniert super für mich. Wenn Sie auch die Zeit seit der letzten Abtastung messen können (in gerundeten Vielfachen Ihrer konstanten Abtastzeit - also 7,8 ms, da die letzte Probe 8 Einheiten betragen würde), könnte dies dazu verwendet werden, die Glättung mehrfach anzuwenden. Wenden Sie in diesem Fall die Formel 8 mal an. Sie haben effektiv eine Glättung vorgespannt mehr auf den aktuellen Wert. Um eine bessere Glättung zu erhalten, müssen wir das Alpha zwicken, während wir die Formel 8 mal im vorherigen Fall anwenden. Was wird diese Glättungsnäherung verpassen Es hat bereits 7 Proben im obigen Beispiel verfehlt Das wurde in Schritt 1 mit einer abgeflachten Wiederanwendung des aktuellen Wertes zusätzlich 7 mal angenähert. Wenn wir einen Approximationsfaktor beta definieren, der zusammen mit alpha angewendet wird (Als alphabeta statt nur alpha), gehen wir davon aus, dass sich die 7 verpassten Samples zwischen den vorherigen und den aktuellen Sample-Werten sanft veränderten. Ich habe darüber nachgedacht, aber ein wenig mucking about mit der Mathematik hat mich auf den Punkt, wo ich glaube, dass, anstatt die Anwendung der Formel achtmal mit dem Beispielwert, kann ich eine Berechnung zu tun Von einem neuen Alpha, das mir erlauben wird, die Formel einmal anzuwenden, und geben mir das gleiche Ergebnis. Ferner würde dies automatisch mit der Ausgabe von Proben, die von exakten Abtastzeitpunkten versetzt sind, behandelt. Ndash Curt Sampson Jun 21 09 at 13:47 Die einzige Anwendung ist in Ordnung. Was ich noch nicht sicher bin, ist, wie gut die Annäherung der 7 fehlenden Werte ist. Wenn die kontinuierliche Bewegung macht den Wert Jitter eine Menge über die 8 Millisekunden, die Annäherungen können ganz aus der Realität. Aber, wenn Sie Probenahme bei 1ms (höchste Auflösung ohne die verzögerten Proben) haben Sie bereits dachte der Jitter innerhalb von 1ms ist nicht relevant. Funktioniert diese Argumentation für Sie (ich versuche immer noch, mich zu überzeugen). Ndash nik Jun 21 09 at 14:08 Richtig. Das ist der Faktor Beta aus meiner Beschreibung. Ein Betafaktor würde basierend auf dem Differenzintervall und den aktuellen und vorherigen Abtastwerten berechnet. Das neue Alpha wird (Alphabet), aber es wird nur für diese Probe verwendet werden. Während Sie das Alpha in der Formel 39 zu haben scheinen, neige ich zu konstantem Alpha (Glättungsfaktor) und einem unabhängig berechneten Beta (einem Tuningfaktor), der die gerade ausgefallenen Samples kompensiert. Ndash nik Jun 21 09 um 15: 23Ein Wochenende für Trend-Anhänger, die ihren Glauben in Frage stellen wollen. Valeriy Zakamulin ist ein Tier, wenn es darum geht, Forschung über bewegte Durchschnitte zu generieren. Wir haben viel von der gleichen Arbeit gemacht, aber wir sind zu faul, die Ergebnisse in einem akademischen Papierformat zu tabellieren. Überprüfen Sie diese Papiere aus: Überprüfen der Profitabilität der Markt-Timing mit gleitenden Durchschnitten In einer aktuellen empirischen Studie von Glabadanidis ist das Papier auch in der jüngsten empirischen Studie von Moving Averages8221 (2015), International Review of Finance, Band 15, Nummer 13, Seiten 387-425 Verfügbar auf dem SSRN und wurde heruntergeladen mehr als 7.500 Mal) der Autor berichtet überzeugende Beweise für außergewöhnlich gute Leistung der gleitenden durchschnittlichen Handelsstrategie. In diesem Papier zeigen wir, dass 8220 zu gut um wahr zu sein8221 berichtet, dass die Performance der gleitenden Durchschnittsstrategie darauf zurückzuführen ist, dass der Handel mit "look-ahead bias" simuliert wird. Wir führen die Simulationen ohne Look-Ahead-Bias durch und melden die wahre Performance der gleitenden Durchschnittsstrategie. Wir finden, dass die Performance der gleitenden Durchschnittsstrategie bestenfalls marginal besser ist als die der entsprechenden Buy-and-Hold-Strategie. In statistischer Hinsicht ist die Performance der gleitenden Durchschnittsstrategie nicht von der Performance der Buy-and-Hold-Strategie zu unterscheiden. Dieses Papier wird mit R-Code geliefert, der es jedem interessierten Leser ermöglicht, die gemeldeten Ergebnisse zu reproduzieren. Eine umfassende Betrachtung der empirischen Leistung von gleitenden durchschnittlichen Handelsstrategien von Valeriy Zakamulin, Arbeitspapier Trotz des enormen gegenwärtigen Interesses an Markt-Timing und einer Reihe von Publikationen in akademischen Zeitschriften gibt es immer noch Mangel an umfassenden Forschung über die Bewertung der Rentabilität des Handels Regeln mit Methoden, die frei von der Daten-Snooping Bias sind. In diesem Papier verwenden wir den längsten historischen Datensatz, der sich über 155 Jahre erstreckt und frühere Studien über die Leistung von gleitenden durchschnittlichen Handelsregeln in einer Reihe von wichtigen Weisen erweitern. Unter anderem untersuchen wir, ob eine Übergewichtung der jüngsten Preise die Performance von Timing-Regeln verbessert, ob es in jeder Handelsregel einen optimalen Lookback-Zeitraum gibt und wie genau die Handelsregeln die bullishe und bärische Börsenentwicklung erkennen. In unserer Studie verwenden wir zum ersten Mal sowohl das Rolling - als auch das Expanding-Window-Schätzverfahren in den Out-of-Sample-Tests die Leistungsfähigkeit von Handelsregeln auf Bullen - und Bärenmärkten und führen zahlreiche Robustheitsüberprüfungen und Tests für Regimeverschiebungen durch In der Börsen-Dynamik. Unsere wichtigsten Ergebnisse lassen sich wie folgt zusammenfassen: Es gibt starke Hinweise darauf, dass sich die Aktienmarktdynamik mit der Zeit verändert. Wir finden keine statistisch signifikanten Beweise dafür, dass Markt-Timing-Strategien den Markt in der zweiten Hälfte unserer Stichprobe übertrafen. Weder die Form der Gewichtungsfunktion noch der Typ des Out-of-Sample-Schätzschemas gestattet es einem Trader, die Leistung von Zeitregeln zu verbessern. Alle Markt-Timing-Regeln erzeugen viele falsche Signale während bullish und bearish Börse Trends, aber diese Regeln neigen dazu, den Markt in Bären-Staaten übertreffen. Die aktuelle Version des Papers über die SSRN-Markt-Timing mit einem robusten Moving Average von Valeriy Zakamulin, Arbeitspapier In diesem Papier haben wir eine Methode zur Feststellung der robustesten gleitenden Durchschnitt Gewichtung Schema für den Zweck der Zeitplanung des Marktes zu verwenden. Die Robustheit eines Gewichtungsschemas definiert seine Fähigkeit, eine nachhaltige Performance unter allen möglichen Marktszenarien unabhängig von der Größe des Mittelungsfensters zu erzeugen. Die Methode wird unter Verwendung der langfristigen historischen Daten zum Standard - und Poor8217s-Composite-Aktienkursindex dargestellt. Wir finden die robustesten gleitenden durchschnittlichen Gewichtungsschema, zeigt seine Vorteile und diskutieren seine praktische Umsetzung. Anatomy of Market Timing with Moving Averages von Valeriy Zakamulin, Arbeitspapier Das zugrundeliegende Konzept hinter den technischen Handelsindikatoren, basierend auf bewegten Durchschnittswerten der Preise blieb seit mehr als einem halben Jahrhundert unverändert. Die Entwicklung in diesem Bereich bestand darin, neue Ad-hoc-Regeln vorzuschlagen und aufwendigere Arten von gleitenden Durchschnitten in den bestehenden Regeln zu verwenden, ohne eine tiefere Analyse von Gemeinsamkeiten und Unterschieden zwischen den verschiedenen Optionen für Handelsregeln und gleitenden Durchschnitten. In diesem Beitrag wird die Anatomie der Marktregeln mit gleitenden Durchschnitten aufgedeckt. Unsere Analyse bietet eine neue und sehr aufschlussreiche Neuinterpretation der bestehenden Regeln und zeigt, dass die Berechnung jedes Handelskennzeichens gleichermaßen als die Berechnung des gewichteten gleitenden Durchschnitts der Preisänderungen interpretiert werden kann. Dieses Wissen ermöglicht es einem Händler, die Antwortcharakteristiken der Handelsindikatoren klar zu verstehen und die Suche nach der besten Handelsregel dramatisch zu vereinfachen. Als eine einfache Anwendung der nützlichen Kenntnisse, die durch unsere Analyse offenbart werden, haben wir in diesem Papier auch eine Methode zur Feststellung des robustesten gleitenden Durchschnittsgewichtungsschemas. Die Methode wird unter Verwendung der langfristigen historischen Daten zum Standard - und Poor8217s-Composite-Aktienkursindex dargestellt. Wir finden die robustesten gleitenden Durchschnitt Gewichtung Schema und zeigt seine Vorteile. Hinweis: Auf dieser Seite finden Sie keine Informationen zu unseren Value Investing ETFs oder unseren ETFs. Bitte besuchen Sie diese Seite. Treten Sie mit Tausenden von anderen Lesern und abonnieren Sie unseren Blog. Bitte beachten Sie, dass die Wertentwicklung in der Vergangenheit kein Indikator für zukünftige Ergebnisse ist. Bitte lesen Sie unseren vollständigen Haftungsausschluss. Die hierin enthaltenen Meinungen und Ansichten sind die des Autors und spiegeln nicht unbedingt die Ansichten von Alpha Architect, seinen Mitgliedsorganisationen oder seinen Mitarbeitern wider. Dieses Material wurde Ihnen ausschließlich zu Informations - und Bildungszwecken zur Verfügung gestellt und stellt weder ein Angebot oder eine Aufforderung zur Angebotsabgabe noch eine Empfehlung zum Kauf von Wertpapieren oder anderen Finanzinstrumenten dar und darf nicht als solche ausgelegt werden. Die hierin enthaltenen sachlichen Informationen wurden aus Quellen gewonnen oder abgeleitet, die der Autor und Alpha Architect für zuverlässig halten, aber nicht unbedingt allumfassend und nicht für seine Richtigkeit garantiert sind und nicht als Repräsentation oder Garantie anzusehen sind , Ausdrücklich oder stillschweigend, hinsichtlich der Richtigkeit oder Vollständigkeit der Informationen, noch sollten die angehängten Informationen als Grundlage jeder Anlageentscheidung dienen. Kein Teil dieses Materials darf ohne ausdrückliche schriftliche Genehmigung von Alpha Architect in irgendeiner Form reproduziert oder in einer anderen Publikation erwähnt werden. Über den Autor Nach dem Servieren als Kapitän in der United States Marine Corps, Dr. Gray erhielt eine Promotion und war ein Finanzprofessor an der Drexel University. Dr. Grays Interesse an Entrepreneurship und Verhaltensfinanzierung führte ihn zu Alpha Architect gefunden. Dr. Grey hat drei Bücher veröffentlicht: EMBEDDED: Ein Marine Corps Berater Innerhalb der irakischen Armee, QUANTITATIVE VALUE: Ein Praktiker Leitfaden zur Automatisierung intelligenter Investitionen und Beseitigung von Verhaltensstörungen und DIY FINANCIAL ADVISOR: Eine einfache Lösung zum Aufbau und Schutz Ihres Vermögens. Seine zahlreichen veröffentlichten Arbeiten wurden auf CBNC, CNN, NPR, Motley Fool, WSJ Market Watch, CFA Institute, Institutional Investor und CBS News hervorgehoben. Dr. Grey verdiente einen MBA und ein PhD in der Finanzierung von der Universität von Chicago und graduierte magna cum laude mit einem BS von der Wharton Schule der Universität von Pennsylvania. Moving durchschnittliche und exponentielle Glättungmodelle Als ein erster Schritt, um über durchschnittliche Modelle hinauszugehen, Random-Walk-Modelle und lineare Trendmodelle, nicht-saisonale Muster und Trends können mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird auf den Zeitraum t (m1) 2 zentriert, was impliziert, daß die Schätzung des lokalen Mittels dazu tendiert, hinter dem wahr zu bleiben Wert des lokalen Mittels um etwa (m1) 2 Perioden. Somit ist das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu der Periode, für die die Prognose berechnet wird, angegeben: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten der Daten zu liegen . Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Fußmodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt er viel von der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-Term einfach gleitenden Durchschnitt versuchen, erhalten wir sogar noch bessere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Serie L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell entspricht einem zufälligen Weg-Modell (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang.) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1 945, bezogen auf den Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 10.2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. otherwise known as an quotARIMA(0,1,1) model without constantquot. The MA(1) coefficient in the ARIMA model corresponds to the quantity 1- 945 in the SES model. For example, if you fit an ARIMA(0,1,1) model without constant to the series analyzed here, the estimated MA(1) coefficient turns out to be 0.7029, which is almost exactly one minus 0.2961. It is possible to add the assumption of a non-zero constant linear trend to an SES model. To do this, just specify an ARIMA model with one nonseasonal difference and an MA(1) term with a constant, i. e. an ARIMA(0,1,1) model with constant. The long-term forecasts will then have a trend which is equal to the average trend observed over the entire estimation period. You cannot do this in conjunction with seasonal adjustment, because the seasonal adjustment options are disabled when the model type is set to ARIMA. However, you can add a constant long-term exponential trend to a simple exponential smoothing model (with or without seasonal adjustment) by using the inflation adjustment option in the Forecasting procedure. The appropriate quotinflationquot (percentage growth) rate per period can be estimated as the slope coefficient in a linear trend model fitted to the data in conjunction with a natural logarithm transformation, or it can be based on other, independent information concerning long-term growth prospects. (Return to top of page.) Browns Linear (i. e. double) Exponential Smoothing The SMA models and SES models assume that there is no trend of any kind in the data (which is usually OK or at least not-too-bad for 1-step-ahead forecasts when the data is relatively noisy), and they can be modified to incorporate a constant linear trend as shown above. What about short-term trends If a series displays a varying rate of growth or a cyclical pattern that stands out clearly against the noise, and if there is a need to forecast more than 1 period ahead, then estimation of a local trend might also be an issue. The simple exponential smoothing model can be generalized to obtain a linear exponential smoothing (LES) model that computes local estimates of both level and trend. The simplest time-varying trend model is Browns linear exponential smoothing model, which uses two different smoothed series that are centered at different points in time. The forecasting formula is based on an extrapolation of a line through the two centers. (A more sophisticated version of this model, Holt8217s, is discussed below.) The algebraic form of Brown8217s linear exponential smoothing model, like that of the simple exponential smoothing model, can be expressed in a number of different but equivalent forms. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)


No comments:

Post a Comment